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The paper deals with the flow properties of dense gases in the throat area of slender 
nozzles. Starting from the Xavier-Stokes equations supplemented with realistic 
equations of state for gases which have relatively large specific heats a novel form of 
the viscous transonic small-perturbation equation is derived. Evaluation of the 
inviscid limit of this equation shows that three sonic points rather than a single sonic 
point may occur during isentropic expansion of such media, in contrast to the case 
of perfect gases. As a consequence, a shock-free transition from subsonic to 
supersonic speeds cannot, in general, be achieved by means of a conventional 
converging-diverging nozzle. Nozzles leading t o  shock-free flow fields must have an 
unusual shape consisting of two throats and an intervening antithroat. Additional 
new results include the computation of the internal thermoviscous structure of weak 
shock waves and a phenomenon referred to as impending shock splitting. Finally, the 
relevance of these results to the description of external transonic flows is discussed 
briefly. 

1. Introduction 
The study of materials which exhibit new and unconventional properties is of 

central importance for the development of advanced and refined technologies in 
many fields of engineering science. In this connection there has been a rapidly 
growing interest in real fluid effects on steady and unsteady flows in the past few 
years. Here the notation 'real' is not meant simply to imply the incorporation of 
dissipative mechanisms such as internal friction, heat conduction, etc. which are 
neglected in studies dealing with ideal fluids. Rather, it signals the occurrence of new 
efiects which are present even in situations where dissipation plays an insignificant 
role. A prominent example is provided by dense gases which have the distinguishing 
feature that the so-called fundamental derivative 

r=-- 

is negative over a finite range of temperatures and pressures, figure 1. Here d = 
(C../@)t is the local speed of sound and @, p" and s" are the pressure, the density and 
the entropy. 

1. I .  Bethe-Zel'dovich-Thompson (BZT) JEuids 
If the isentropes in the @ , l / p  diagram are curved up then r > 0 and the properties 
of steady as well as unsteady flows qualitatively resemble those of perfect gases 
having r = i (y+ 1) where y denotes the ratio of the specific heats. It has already been 
shown, however, by Kethe (1942) and independently by Zel'dovich (1946) that  Van 
der Waals gases may exhibit regions where the isentropes are curved down, e.g. 
regions where r < 0, provided the specific heats take on sufficiently large values. 

a(pa") ap I 
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lip" 
FIGURE 1. Schematic of @, l/P)-diagram showing regions of r > 0 and r < 0. 

More recent studies based on relatively sophisticated equations of state including 
that of Martin & Hou (1955) are due to Thompson and coworkers (Thompson 1971 ; 
Thompson & Lambrakis 1973) who gave specific examples of fluids having I'< 0 
which include hydrocarbons and fluorocarbons of moderate complexity. Because of 
the significance of each of these studies we refer to such fluids as B e t h e  
Zel'dovich-Thompson (BZT) fluids. For a thorough discussion of the Martin-Hou 
equation in the context of the fundamental derivative the reader is referred to 
Lambrakis & Thompson (1972), Thompson & Lambrakis (1973) and Cramer (1989). 

Detailed investigations performed over the past ten years (as documented for 
example in the review articles by Cramer 1991a, Kluwick 1991) have revealed a 
number of phenomena which may occur in flows of BZT fluids but have no 
counterpart in the classical theory of gases with r > 0. Examples include expansion 
shocks, the partial disintegration of both compression and expansion shocks, shock 
splitting and sonic shocks. By sonic shock we mean a shock having a speed which 
coincides with the convected sound speed just upstream or downstream of the shock. 

Recent studies dealing with the properties of dense gases indicate that they may 
indeed represent preferable working fluids in many engineering applications as for 
example in organic Rankine cycles. In this case as well as in other cases of practical 
interest it is necessary to accelerate the medium to high subsonic or even supersonic 
speeds. How this can be achieved in variable-area ducts is the topic of the present 
paper. 

1.2. Isentropic expansion of BZT j h i d s  
As a starting point it is useful to consider the variation of the Mach number M along 
isentropes which cross the negative-T region as the density decreases starting from 
an arbitrary stagnation value. Differentiation of the energy equation for steady 
flows, 

where denotes the enthalpy, with respect to p" leads to the relationship 

first derived by Thompson (1971). According to this result the Mach number 
increases with decreasing density if r > 1.  For this reason the line r = 1 is included 
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l / F  
FIGURE 2. Mach number variation during isentropic expansion. 

in figure 1 in addition to the so-called transition line r= 0. If the fluid, therefore, 
expands isentropically starting from stagnation conditions to the right of the line 
r= 1 the quantity J is always negative and the Mach number increases 
monotonically with decreasing values of p” just as in the case of a perfect gas. 
However, as the value of the stagnation density increases, the corresponding M 
versus i5 curves will eventually penetrate into the region where the quantity J is 
positive, figure 2. Inside this region M is seen to decrease during the expansion 
process. Even so, however, sonic conditions M = I are reached, in general, only 
once : either before the isentrope enters the J > 0 region or after this region has been 
left. In the vicinity of the critical point M = 1 the Mach number then varies linearly 
with p” and by analogy with the perfect gas case one concludes that a full supersonic 
expansion can be attained by means of a classical converging-diverging Lava1 
nozzle. 

In addition, there exist also exceptional cases where the M versus 1/p curves 
exhibit three sonic points rather than a single one. Flows of this type have not been 
studied in detail so far. However, some insight into the behaviour of such flows can 
be gained if it is assumed that the thermodynamic state corresponding to critical flow 
conditions M = 1 is characterized by a point located in the vicinity of or at the 
transition line r = 0. Obviously, two different cases have to be distinguished. 

In the first case sonic flow conditions are reached near one of the high- or low- 
pressure zeros of r:r = 0, aI‘/ap Is =I= 0. One then finds that two of the three sonic 
points lie in the neighbourhood of the J = 0 curve. An analysis of transonic nozzle 
flow based on this assumption has recently been carried out by Chandrasekar & 
Prasad (1991). 

In  the second case to be investigated in the present paper sonic flow conditions are 
reached in the vicinity of the point where the equilibrium isentrope touches the 
transition line : r = 0, W/ap Is = 0. As a consequence, the value of the Mach number 
Mmi, characterizing the minimum of the J > 0 region differs only slightly from 1 and 
all three sonic points which occur during isentropic expansion almost collapse onto 
the curve J = 0. 

Both situations outlined so far may - at first sight - appear somewhat artificial. 
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FIGURE 3. Sketch showing nozzle geometry and notation. 

From the viewpoint of possible practical applications the opposite should be true, 
however. I n  order to utilize the potential advantages of BZT fluids, e.g. the smallness 
of the entropy losses across shocks, the thermodynamic state of the working fluid 
should be close to a state having r = 0 and if possible also W/aP Is" = 0. Furthermore, 
apart from being of interest in its own right the study of this latter case is expected 
to give a qualitatively good picture of the general case that the M vei-sus 1 /@ curve 
exhibits three sonic points. 

2. Problem formulation 
The problem considered and the notation used are shown in figure 3. \TTe 

investigate the flow of a BZT fluid through a variable-area duct or nozzle. The 
consideration will be restricted to the throat region of the nozzle where the local 
Mach number M differs only slightly form the critical value M = 1.  Furthermore, it 
will be assumed that the cross-section area A" changes sufficiently slowly with 
distance 2 so that the variation of the various flow quantities in the direction normal 
to the nozzle axis is negligibly small. As a consequence, the appropriate form of the 
governing equations is given by the one-dimensional version of the Kavier-Stokes 
equations. Owing to the transonic nature of the flow it is natural to non- 
dimensionalize these equations such that - -  

P = Z x ,  A = A , , A ,  v"=B,,v, /?=p",,p, i f = E , , , ~ ,  r j : = , 6 d 2  

O (2.1) 
- -  - *  

T = T , T ,  h = & i h ,  &=&,a, i C = I F , I c ,  h=h ,h ,  li;=li;,,p 

where d. /?, s", rj: ,  p, h, &, i, li;, E p  and E, denote, respectively, the'velocity, density, 
entropy, pressure, temperature, enthalpy, thermal conductivity, first and second 
viscosities, specific heats a t  constant pressure and volume and the subscript 0 
denotes quantities evaluated a t  the sonic reference state. L" and A", characterize the 
length and the cross-sectional area of the throat region and & = (aF/@ Is)+ is the speed 
of sound. The continuity equation. momentum equation and energy equation then 
read 

- -  - -  
cp = cpocp ,  c, = cw0c,, .  

1dA i d p  1dv _ _  +--+-- = 0 
A d x  pdx vdx ' 

(2.2) 

(2.3) 

(2.4) 
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Here yo = Cppo/Cvo is the ratio of the specific heats and 

Re = ci,fi,L"/,ii,, Pr = ,iio Cpo/&, ,  Ec = c i i / ( E v o  c) (2-5) 

denote the Reynolds, Prandtl and Eckert numbers. 

to be supplemented with the shock jump conditions 
In  the inviscid limit i, i, ,li = 0, i.e. Re-l = 0, equations (2.2), (2.3) and (2.4) have 

where the brackets denote jumps, i.e. [q = U,- l&,, and the subscripts a and b refer 
to conditions after and before the shock. 

3. Viscous small-perturbation equation 
In  this section we derive a single equation which governs the density distribution 

in the transonic region of the nozzle. To this end it is convenient to eliminate the 
pressure gradient in the momentum equation using the relationship 

where is the coefficient of thermal expansion 

which is assumed to  be positive, ,8 > 0. 
Combining ( 2 . 2 ) ,  (2.3) and (3.1) one then obtains 

3.1. Xmall-disturbance approximations 
Since considerations will be limited to the neighbourhood of the throat area of the 
nozzle where v-11 < 1 we expect dA/dx to be much smaller than dp/dx,dv/dx. 
Evaluation of the continuity equation (2.2) therefore yields the usual transonic 
approximation 

Here we are concerned with weakly dissipative flows, i.e. Re $ 1. In  this limit, the 
energy equation (2.4) reduces to 

dvldx - - dp/dx. (3.4) 

ds 1 yod2T 
dx Re Pr dx2 

+... T- -  __- (3.5) 

As a result, entropy disturbances are small and the constitutive relationship 
?' = T(p, s) can be approximated by 

22 FLM 247 
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To leading order, (3.3) thus assumes the form 

3.2. Mach number-density relationship 
As shown in Thompson (1971), Cramer (1991b) the variation of M with p under 
isentropic flow conditions is given by 

Taylor series expansion of M about the basic state M =  1 assuming that the 
fundamental derivative is expressed in terms of p and s: r = T ( p ,  s), then yields 

(3.10) 

As before, the subscript 0 is used to denote quantities evaluated in the reference state 

Let 6 < 1 be a measure of the small density disturbances inside the throat area, i.e. 

p = l + € p l + o ( € ) .  (3.11) 

In the case considered here the sonic state of the fluid is reached in the vicinity of the 
point where the isentrope is tangent to the transition line r = 0. r, A and N therefore 
satisfy the order of magnitude relationships 

p = 1, s = so. 

r = € z f ,  f = o(i), 

A = e 6 ,  6= 0(1), 

N = R ,  N=0(1). 

Substituting (3.11), (3.12), into (3.9) one obtains 

(3.12) 

3.3. Modijied viscous transonic small-perturbation equation 
If the effects of the slowly changing area of cross-section and weak dissipation are to 
be retained in (3.7) we have to  require 

A = 1 +e4A1+o(e4), Re = ac3,  CT = O ( 1 ) .  (3.14) 

In  this distinguished limit, combination of (3.7), (3.11) and (3.13) yields the modified 
viscous transonic small-perturbation equation 

(3.15) 
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(3.16) 

is essentially the acoustic diffusivity of a general fluid, e.g. Cramer & Kluwick (1984). 
It is of interest to note the differences between the scalings as expressed by (3.14) 
and the classical results for perfect gases: A - 1 = O(cz), Re = O(e-l). These are, of 
course, an immediate consequence of the basic assumption adopted here that the 
fundamental derivative is small rather than of order one, which results in a much 
weaker nonlinearity. 

Introducing the expansions 

v = ~ + c v , + o ( s ) ,  T =  ~ + E ~ + o ( E ) ,  

p = po  + €p1 + o(+ s = 8, + €4 8, + o ( E ~ )  
similar to (3.11), evaluation of (3.1), (3.4), (3.5) and (3.6) yields 

(3.17) 

(3.18) 

It is convenient to write (3.15) in the equivalent form 

j, + A ,  = Q = const., (3.19) 

where (3.20) 

is the density of the perturbation mass flux. Here the first three terms describe the 
variation of j, with p1 under isentropic flow conditions while the last term accounts 
for the entropy changes caused by internal friction and heat conduction. 

4. Inviscid flow 
4.1. The (j,, p,)-diagram 

In the limit Re-tco, i.e. &-to,  equation (3.20) reduces to an algebraic relationship 
between the perturbation mass flux and the density disturbances 

j 1 -  --fopp2-l/i 1 3 *oP~-+%oP:. (4.1) 

Using this result, (3.13) which determines the Mach number variation during 
isentropic expansion or compression can be written in the form 

(M-  l ) / ~ ~  = ?jdj,/dp,. (4.2) 

Furthermore, Taylor series expansion about the reference state leads to the following 
leading-order expressions for the scaled local values of the fundamental derivative 
and its derivative with respect to p :  

(4.3) F =  -&d2j,/dp;, 2 = -3 1d3' J,/  d p,. 3 

M -  1 and r, therefore, change sign at  values of p1 corresponding to stationary and 
inflexion points of the j, versus p1 diagram, respectively. A typical jl(pl) curve _is 
sketched in figure 4 for a reference state having positive values of both f', and A,. 

22-2 
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1 1  

r>o r<o A r>o - - .  - 
i 

Q = Qmax 

- P 1  

- - -  
FIGURE 4. (jl,p,)-diagram corresponding to EL reference state with fa > 0, & > 0. 

,I fia > 0 
\ 

i " > O  ,' 

1/P 
FIGURE 5. Regions of fa 3 0 and 2" 3 0 in the (@,l/P)-plane : -, transition line r = 0 ;  

..... , line A = 0 ; -. -. -, isentropes. 

Regions of the (@, l/p")-plane where fo and /1;7 assume positive and negative values, 
respectively, are depicted schematically in figure 5 .  Furthermore, figure 6 indicates 
the variation of the j,(p,)-diagram as the reference state crosses the negative-rregion 
along an  isentrope starting at a point near one of the high-pressure zeros of T. If 
fo 9 i:/l?" the plots qualitatively resemble the perfect gas result, i.e. thej ,  versus p1 
diagram exhibits a single maximum at p1 = pf = 0 corresponding to the single sonic 
state which occurs during isentropic expansion. If f,, < 3~&(8@~) ,  however, sonic 
conditions are reached in addition at 

(4.4) 

and, as a result, the associated (jl,pl)-plots show two maxima and one minimum. 
The two values of pf given by (4.4) correspond, respectively, to  a sonic state inside 
the r < 0 region and a sonic state in the vicinity of the low-pressure branch of the 
transition line r = 0 having r > 0. Consequently, not all the curves included in figure 
6 correspond to cases which are physically independent. I n  fact, if the reference &ate 
is identified with the sonic state which occurs first during isentropic expansion 



Transonic nozzle $ow of dense gases 669 

-3  -2 - 1  0 1 2 3 

PI 
4 

2 

0 

-2 

.il 

-4 

- 6  

-8 

-2  - 1  0 1 2 3 4 

Pl  
FIGURE 6. Variation of the (j,: p,)-diagram as the reference- state-varies aloqg an- isentrope 
which passe; through the negative-r region: ( a )  r,, 9 1, ( b )  ro = 3A3S.N0, ( c )  To = Ai/3N0, ( d )  
r,, = 0 ,  ( e l  A ,  = 0. 
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FIUURE 7 .  Subsonic-supersonic expansicn of BFT flpids: no_zzle shape leading to a linear 
density distribution. (a )  To > 34/(8N,), ( b )  To < 3&/(@,,). 

s@rting from stagnation conditions it suffices to investigate the parameter range 
ro 0, A,  > 0. Although other choices may be more convenient in some situations 
from a practical point of view the following considerations will be limited to this 
parameter range for brevity. 

4.2. Nozzle shapes leading to linear densitylpressure distributions 
According to (3.18), (3.19) the (j,,p,)-relationship (4.1) can be used immediately to 
design a nozzle which yields a prescribed density (pressure, etc.) distribution or to 
determine the density (pressure, etc.) distribution in a nozzle of given shape. In this 
connection it is useful to note a simple geometrical interpretation of the linearized 
continuity equation (3.19) : the cross-sectional A ,  corresponding to a specific value of 
the density p1 is given by the distance between the line j, = Q = const. and the j, 
versus p1 graph. 

As a first example we consider the acceleration of a BZT-fluid from subsonic to 
supersonic speeds imposing the linear pressure/density distribution 

p ,  = p1 = -cx, (4.5) 

(4.6) 

where C is a positive constant. Evaluation of (3.19) and (3.20) then gives 

A , = Q,,, + P,, C2x2 - $A, C3x3 + +.&, C4x4. 

Here Q,, denotes the value of j, at the maximum of the (jl,pl)-relationship, 
figure 4. 

As in the case of a perfect gas the shape of the nozzle qualitatively resembles the 
shape of the (jl, pl)-graph. A linear density distribution, therefore, can be achieved 
by a conventional converging-diverging nozzle if F, > 3Li/(f&,), If f, < 31;/(f&,), 
however, a nozzle having two throats rather than a single throat is required, figure 
7. Of course, these conclusions remain unchanged if the linear density distribution 
(4.5) is replaced by a monotonically decreasing function. 

Equations (4.1) (4.2) and (4.5) can be combined to yield the expression 

(M-  1 )/.3 = Po cx -;J, czX2 +so c32 (4.7) 

for the Mach number variation along the nozzle axis. With the exception of the 
perfect gas case A,  = No = 0, a linearlylmonotonical decreasing density distribution 
thus does not lead to a linearly/monotonical increasing Mach number distribution. 
In particular, M = 1 in both throats and the intervening antithroat. This is in 

A , .  
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FIGURE 8(a, b ) .  For caption see page 673. 

agreement with the result first derived by Thompson (1971) that a nozzle with an 
antithroat is needed to achieve the transition of a negative-r fluid from subsonic to 
supersonic flow. 

4.3. Densitylpressure distributions in converging-diverging nozzles 
Following this brief discussion of shock-free accelerating flows let us discuss the flow 
through a conventional converging-diverging nozzle in more detail. Specifically, it 
will be assumed that the shape of the nozzle is given by 

A ,  = cx2, c>  0. (4.8) 



672 A .  Kluwiclc 

1 
-2 - 1  0 1 2 

xc: 

0.5 

p ,  = p, 

0 

-0.5 

-1.0 

-1.5 

- 2.0 

-2.5 
-2 - 1  0 I 2 

X C k  

FIGURE 8 ( c ,  d) .  For caption see facing page. 

Qualitatively similar results, however, hold for other nozzle shapes and can indeed 
be extracted quite simply from the results based on (4.8) taking into account that 
there exists a unique relationship between p1 and A ,  once the value Q of the 
perturbation mass flux has been specified : p1 = pl(Al ; Q ) .  

Density contours corresponding to various values of Q are depicted in figure 
8(a-f) .  If Po > 3 ~ & ( 8 8 ~ )  thej,(p,)-curve exhibits a single maximum and the results 
thus qualitatively resemble the results obtained for perfect gases, e.g. there exists a 
single saddle point a t  p1 = x = 0 and the density distributions passing through this 
point describe the shock-free acceleration/deceleration of the fluid from sub- 
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FIGURE 8. Lava1 nozzle: density distributions for various values of the perturbation mass flux. 

c, > 3&/(8N,): To = 2p.06,,JO =_30.96, No_= 19.22; (b) r, = 3Ai/J8h7,): r, = 6.26, A , ,  17;25, 

To = 4.40, A,  = i5.25, No =-17.61; (e) 4 / ( 3 N , )  > r, > 0: r, = 3.48, A ,  = 14.03, No = 17.48; (f) 

XCi 

-.-.-.- S h p k  piscontinuitLes needed _to achieve ful! subso_nic-yper_sonic expapion. (a) 

iv, = 17.82; p) 34/(wd > r, > n : / ( f i ~ :  ra = A,  =~5 .80 ,  iv, : 17.67; ( d )  r, = &/(3No) : 

r, = 0: r, = 0, A,  = 8.02, N,  = 16.86. 

sonic/supersonic to supersonic/subsonic speeds. In addition there exist purely 
subsonic or supersonic solutions if Q < Q,,, = 0, while the density distributions 
cannot be continued up to and through the throat if Q > 0, figure 8(a).  

I f f , ,  = 32:/(88,,), isentropic expansion or compression of the fluid leads to sonic 
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conditions a t  p1 = 0 and p1 = -310/&0, respectively. Since rvanishes for the latter 
value of the density perturbation all density distributions passing through this 
additional sonic point exhibit vertical tangents and as a result a cusp is formed at 
p1 = - 3 & / f i 0 ,  x = 0, figure 8 ( b ) .  

A second saddle point and a centre emerge from this cusp if Po is reduced further. 
Indeed, it is easily shown that each maximum/minimum of the jl(pl) relationship 
leads to the formation of a saddle/centre located at x = 0, and the associated critical 
value of p1 = p:. Owing to the presence of two sonic points having r > 0 and an 
intervening sonic point having r < 0 all density distributions except those 
corresponding to purely subsonic or purely supersonic flow fold to form regions of 
multivaluedness. Since the density distributions passing through x = 0, p1 = 0 
loosely resemble the shape of a downward pointing tulip this configuration will be 
termed a ‘tulip down’ configuration, figure 8(c).  

both maxima of the mass flux-density relationship touch the line 
j, = 0, figure 6. As a consequence, the density distribution corresponding to the 
maximum value of the perturbation mass flu? Q = Q,,, = 0 passes through both 
saddle points, figure 8 ( d ) .  Further reduction of roAeads to the ‘tulip up ’ configuration 
shown in figure 8(e) .  With decreasing values of ro the centre approaches the sagdle 
point located a t  x = 0, p1 = 0 and a cusp is formed there in the limiting case r,, = 
0, figure S(f). 

If p1 differs only slightly from the value pT corresponding to a sonic state 
(dj,/dp,),~ = 0, the j, versus p1 relationship (4.1) can be approximated by 

If fo = 

j l  - j l ( P : ) - m  (P l -P: )2 ,  (4.9) 

which is of course just the perfect gas result where the constant value of r has been 
replaced by f evaluated a t  p:. In  agreement with the density distributions shown in 
figure S(u-f) we thus infer that  the minimum of the (jl,pl)-diagram leads to the 
occurrence of a centre at z = 0 while each maximum causes the formation of a saddle 
point 

(4.10) 

if (d2A/dx2),=, > 0 as in the case of a Lava1 nozzle. Furthermore, (4.10) indicates 
that an antithroat (dzA/dx2),,o < 0 is needed to accelerate the fluid continuously 
through a sonic state with r< 0 as pointed out first by Thompson (1971). 

The above considerations indicate that continuous, single-valued solutions 
describing the acceleration of a BZT fluid from subsonic to supersonic speeds exist 
for fo 2 3&/(8&0) only. We therefore conclude that shocks will form inside a 
conventional converging-$ivergiqg nozzle if the reference state is outside this 
parameter range, e.g. if ro < 3Ai / (8f iO) .  To determine the correct form of the 
resulting flow pattern but also to complete the description of general nozzle flows we 
consider next the properties of weak shock discontinuities. 

4.4. Shock admissibility criteria 

Since the mass flux is continuous across a shock front, density disturbances before 
and after the shock satisfy the relationship 

bl] = 0. (4.11) 

Corresponding values of p1 in the jl(pl)-diagram, therefore, lie on straight lines 
(Rayleigh lines) which are parallel to the pl-axis, figure 9. 
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FIQURE 9. Different types of admissible shock discontinuities. 



676 A .  Kluwick 

According to (2.9) the entropy s must not decrease across shock discontinuities. 
Substitution of the Taylor series expansions 

where V = l /p into (2.8) yields 

(4.12) 

To the order of approximation considered here this relationship is equivalent to the 
expression 

(c",O Is] = e 5 { ~ j 7 b [ P 1 1 3 + ~ ~ b [ ~ 1 ] 4 f ~ ~ O [ P 1 1 5 } + 0 ( ~ 5 ) .  ( 4 . 1 3 )  

Here fb and /ib characterize the scaled values of r and its derivative with respect to 
p immediately before the shock front. Using (4.3) these quantities are expressed in 
terms of the values f , , , /ia at the reference state and the corresponding density 
perturbations. One obtains 

(EvO %/%I = "+bli3 ~pO+$iOo(Pla+Plb) 

?h60(3da+4/'1aPlb + 3 d b ) }  + 0 ( E 5 ) *  (4.14) 

Evaluation of (4.2) leads t o  the relationship 

= -e3b11 if0 +i i0(pla+Plb)  +@O(da + P l a P l b  +P;b)} +'(''). (4.15) 

Equations (4.14) and (4.15) can be combined to  yield the result 

(za0 %/a":) [s ]  = -&e2 [p,12 [MI -&280[p,15 + 0(e5). ( 4 . 1 6 )  

The properties of weak unsteady and steady shocks in fluids having mixed 
nonlinearity have been investigated by Cramer & Kluwick (1984) and by 
Chandrasekar & Prasad (1991) adopting the assumption that To = O(e), A,, = O(1) 
under reference conditions. As a consequence, the variation of A with the 
thermodynamic state could be neglected to leading order. It was found that the 
requirement [s] 3 0 following from the second law of thermodynamics was too weak 
to rule out inadmissible shock discontinuities, e.g. shocks for which a thermoviscous 
profile does not exist. To eliminate inadmissible shocks, the wavespeed ordering 
principle expressing the requirement that shocks must lead to a supersonic-subsonic 
transition (including the limiting cases that sonic conditions exist either before or 
after the front) was imposed. 

Also in the case studied here, To = O(e2) ,  A,  = O(s) ,  the requirement [s] 2 0 is 
found to  be too weak to  rule out the formation of inadmissible shocks. However, such 
shocks may occur even if the wave speed ordering principle is imposed. As will be 
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seen from the analysis of the shock structure problem discussed in the next section 
admissible shocks have to meet the additional condition that the Rayleigh line j ,  = 
const. must not cut the j ,  versus p1 relationship: 

(4.17) 

the Rayleigh line connecting the values 
of p1 before and after the shock must 
not cut intervening branches of the 
(j,, p,)-diagram 

Mb 2 1 aMa 

shock admissibility criterion A 

The first condition of (4.17) is equivalent to the criterion first formulated by 
Oleinik (1959) in a different context. According to the second relationship of (4.17) 
shocks may have sonic upstream conditions Mb = 1 or sonic downstream conditions 
Ma = 1 (sonic shocks) but also sonic upstream and sonic downstream conditions 
M,, = Ma = 1 (double sonic shocks). In the latter case both requirements (4.17) are 
satisfied in a trivial manner and, therefore, they can not be used to decide whether 
double sonic shocks occur in the form of expansion or compression discontinuities. I n  
order to answer this question the jump condition [M] = 0 holding for such shocks is 
inserted into (4.16) to yield 

(4.18) 

Since is a positive constant we conclude that double sonic shocks can occur in the 
form of expansion shocks only. 

The result (4.17) is useful to identify possible shock discontinuities in the (j,, pl)- 
plane, figure 9. To simplify the discussion of possible density distributions in a nozzle 
of given shape it is, however, convenient to express it in terms of p1 and x. To this 
end we take into account that there exists a functional relationship between j ,  and 
x once the imposed value of the perturbation mass flux Q and the nozzle geometry 
characterized by the function A,(x)  have been specified. As a consequence we obtain 

(4.19) I the line x = const. connecting the values 
of p1 before and after the shock must 
not cut intervening branches of the 
density distribution I shock admissibility criterion B 

4.5. Xhock discontinuities in converging-diverging nozzles 
The admissibility criterion (4.19) can immediately be used to  insert shock 
discontinuities into the density distributions for converging-diverging nozzles 
calculated earlier. Owing to the complexity of these solutions as exemplified by figure 
8(u-f) an exhaustive discussion of all possibilities is not attempted. Rather, we 
restrict the considerations to a few typical examples. 

As a starting point we consider the case that the medium accelerates from subsonic 
to supersonic speeds and discuss the changes of the flow field associated with changes 
of the reference state which $ assumed to vary along an isentrope which crosses the 
negative-rregion. If I', 2 3A;/(8@J the fluid expands in a shock-free manner similar 
to  the perfect gas case. For smaller values of fo the density distributions cease to be 
single valued and an expansion shock having sonic upstream conditions forms far 
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'1 = p 1  

FIGURE 10. Lava1 nozzle: possible dengity disY,,butjons for Q Q,,, leading to  subsonic flow 
far downstream; To = 24.06, A,  = 30.96, No = 19.22. 

downstream, x +a, in the limit fo - 3&/(8fi0) -+ 0 - . With decreasing values of Po 
this shock moves upstream, figure S(c). At the same time the state of the fluid 
downstream of the shock front appro_aches sonic conditions and a double sonic 
exp_ansion shock is located a t  x = 0 if T, = 2 i / ( 3 f i 0 ) ,  figure 8 ( d ) .  Further reduction 
of KO causes the shock to move upstream of the throat, its position tending to x+oo 
as ro+O, figure 8 ( e , f ) .  

As a second case we investigate flows which are accelerated from subsonic to 
supersonic speeds and then shocked back to  a subsonic state. Similar to the theory 
of perfect gases, solutions of this type a;e fount to be non-unique in the leading-order 
approximation considered here. If To 2 34/(&,,), for example, all jump dis- 
continuities connecting the supersonic branch Q = 0 and the subsonic branch Q = 0 
represent admissible compression shocks, figure 10. The local behaviour of the 
density distributions near x = 0 does not change quali_tatively if fo decreases below 
this value but stays in the range 3$/(8N0) > fo > At/(3@0).  It thus follows that 
solutions with sufficiently weak compression shocks qualitatively resemble those for 
fo 3 32i/(8&0). Solutions with stronger shocks, however, exhibit a completely 
different behaviour as can be seen from figure 11 which shows the variation of the 
flow field associated with a continuous increase of the overall density jump. 

As pointed out earlier, small density jumps are achieved by single compression 
shocks forming just downstream of the throat, figure 11 (a ) .  With increasing strength 
the shock front moves downstream until sonic upstream conditions are reached. In 
order to construct solutions with larger overall density jump an additional expansion 
shock located upstream of this sonic compression shock has to be inserted, figure 
11 (b ) .  As this expansion shock strengthens it is shifted to smaller values of x until it 
assumes a limiting position corresponding to  sonic downstream conditions. By 
imposing a further increase of the overall density jump we are led to the three-shock 
configuration displayed in figure 1 1  ( c )  which is characterized by the occurrence of a 
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PI = P I  PI = P1 

FIGURE 11. Lava1 nozzle: possible density distribttions for Q _ =  Q,,, leading t o  subsonic flow 
far downstream; To = 4.91, A,  = 15.80, No = 17.67. 

compression shock between the sonic expansion shock and the sonic compression 
shock. The requirement of increasing amplitude forces this shock to  move 
downstream and it eventually merges with the sonic compression shock. The 
resulting single compression shock hasM =!= 1 both upstream and downstream and its 
strength increases monotonically as i t  is shifted downstream. In this way one obtains 
the configuration shown in figure 11 ( d )  which, finally, can be extended to  arbitrarily 
large shock amplitudes. 

Investigation of the limiting case f,, = 4/(3N0) leads to results which are 
qualitatively similar to those described above. It suffices to note, therefore, that  the 
sonic expansion shock shown in figure 11 (c, d )  has to be replaced by a double sonic 
shock a t  x = 0. 

Interesting new flow patterns may form, however, if 4/(3&0) > fo > 0. As 
pointed out earlier, the solution leading to a full subsonic-supersonic transition then 
includes a sonic expansion shock upstream of the throat, figure 8 ( e ) .  The requirement 
that  the medium decelerates rather than accelerates downstream of the throat forces 
the second branch of the density distribution passing through the lower saddle point 
to  come into play. The resulting solution is characterized by the presence of a sonic 
compression shock in the diverging part of the nozzle in addition to the sonic 
expansion shock upstream of the throat, figure 12 (a). By continuously increasing the 
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overall density jump occurring in the solution one obtains the flow configurations 
depicted in figure 12(b,  c ) .  

The results outlined so far hold if the perturbation mass flux Q assumes its 
maximum value Q,,, thus yielding M = 1 a t  x = 0. Inspection of figure 8 ( e )  shows 
that sonic conditions are reached at the throat also if the perturbation mass flux is 
reduced to Q = 0. The corresponding density distribution is, of course, of no 
relevance as far as a full subsonic-supersonic expansion of the medium is concerned. 
It can be used, however, to construct a second class of solutions describing flows 
which (eventually) decelerate in the diverging part of the nozzle after having been 
accelerated to sonic or even slightly supersonic speeds, figure 12 ( d ,  e) .  In  contrast to 
the case Q = Q,,, solutions with Q = 0 cannot be extended to arbitrarily large values 
of the overall shock strength. The limiting flow configuration shown in figure 12 (f) 
is characterized by the presence of a sonic expansion shock a t  the throat x = 0. 

The solutions summarized in figures 10, 11 and 12 are non-unique in the sense that 
families of them satisfy the same boundary conditions upstream of and far 
downstream of the throat x =  0 to leading order. In order to determine the 
relationship between the various possible shock configurations and the imposed 
conditions a t  the nozzle exit it would be necessary to account for the effects of the 
shock losses on the solution. It is tempting to expect that, for example, figure 11 (a-d) 
describes the variation of the flow field caused by a slow quasi-steady reduction of 
the exit pressure. However, since the study of dense gases has already revealed a 
number of results which (guided by experience based on classical gasdynamics) must 
be regarded as grossly anti-intuitive, such a statement has to be considered with 
proper caution. 

5. Shock structure 
5.1. Large Reynolds number approximation 

In  general, the modified viscous transonic small-perturbation equation (3.15) has to 
be solved numerically. Here, we are mainly concerned with the thermoviscous 
structure of shocks in the limit of large Reynolds number, i.e. 6,+0. For viscous 
terms to come into play, the shock thickness A has to be small: A = O(6,). As a 
consequence, it is convenient to introduce the stretched x-coordinate 

where x, denotes the location of the jump discontinuity as given by inviscid theory. 
Furthermore, since the cross-sectional area A varies only slightly across the shock 
profile, A ,  is written in the form 

Substitution of (5.1) and (5.2) into (3.15) yields to leading order 

Here, jfv is the non-viscous part of the perturbation mass-flux density 

and the subscript s characterizes its value immediately before or after the shock. 

z = ( X - X , ) / S , ,  (5.1) 

A ,  =A,(x,)+G,(dA/dx) (x,)z+o(S,). (5.2) 

(5 .3)  

(5.4) 

dPl/& = flnV -$yV 1 s -  

jy = -fop;-iJ 3 oP;-+80P: 

5.2. Asymptotic properties of shock profiles 

According to (5 .3)  the slope of the shock profile associated with a specific value p, is 
given by the difference between j y ( p , )  and the mass-flux density $1 = p ( p l b )  = 
jpV(pl,) before and after the shock. As a result, some general features of shock profiles 
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can be inferred directly from the shape of the (jl,pl)-diagrams depicted in figure 9. 
For example, i t  is seen that three difierent cases have to be distinguished as far as 
the properties of the shock structure for p1 -+ pla, p1 + plb are concerned. 

If the Mach number M ,  before orland after the shock is different from 1 the local 
behaviour of jyv  -2' for Ipl -plcl 4 1 can be approximated by 

where a prime denotes differentiation with respect to pl. Integrating ( 5 . 3 )  one obtains 

Here C is an arbitrary constant. 

sonic shock and (5.5) has to be replaced by 
In the case (jl;nv)d = 0, the shock under consideration is a sonic shock or a double 

( 5 . 7 )  

As a consequence, the upstream orland downstream asymptote of the shock profile 
is approached algebraically rather than exponentially 

(5.8) 
2 

P l - P l e  - -~ .inv - as ~ + - m  orland Z+W. 
(21 )ex 

Finally, one has to consider sonic shocks having (c"); = ($'"): = 0:  

(5.9) 

5.3. Split shocks 
Inspection of figure 9 shows that shocks as typified by cases (i)-(iv), (vi) and (vii) lead 

quently, the corresponding shock profiles qualitatively resemble classical Taylor 
shock profiles having a single inflexion point, figure 13(a). However, if the Rayleigh 

resulting j:nv -jT; distribution will exhibit two maxima and a minimum, leading in 
turn to shock profiles with three inflexion points, figure 13(b ) .  As the Rayleigh line 
approaches the minimum jyv =jlmln of the j, versus p1 curve from below, jT'- 
jlnlln + 0- , the slope of the shock profile at the middle inflexion point tends to zero 
and the overall density increase across the shock then is achieved, essentially, in 
two steps. Moreover, the density distributions associated with these steps which are 
separated by a pronounced plateau region, figure 13 ( c ) ,  differ only slightly from the 
limiting form of the shock profiles obtained for j?: -j1,,, --f 0 + , having sonic 
downstream and sonic upstream conditions, respectively. Owing t o  the slow 
algebraic decay law (5.8) holding for sonic shocks, the length of the plateau region 
increases without bound in the limit ji:i-,jlmin+ 0- characterized by M +  1 inside 
the plateau region, e.g. the shock splits. Physically, this means that the density jump 
corresponding to a position of the Rayleigh line touching the minimum of the (j l ,pl)-  
diagram defines a lower bound for the strength of steady shocks which bridge the 
nrgative-r region. This ties in nicely with the third conclusion which follows 
immediately by inspection of the various possible ,jyV -cj;''' distributions : steady 

to J-;nv -jinv distributions which exhibit a single maximum or minimum. Conse- 

1ineJ.;nv - - J ~ , ~  'inv falls below the minimum of the (jl,pl)-diagram (case (v) of figure 9) the 
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J 

FIGURE 13. Different types of shock profiles (Po = 3.58, L&, = 14.22, No = 17.51). (a)  Profile with 
single inflexion point ; j?; = -0.2. ( b )  Profile with three inflexion points: J?' = - 1.0. (c) Profile 
with pronounced plateau region : z; = -0.48. 

shock profiles, e.g. solutions to (5 .3) ,  exist only if the Rayleigh l i n e p  =cz does not 
cut the (jl, p,)-diagram a t  internal points of the interval (pla, PI,,). 

The phenomenon of impending shock splitting was observed first in a different 
context by Cramer & Crickenberger (1991) who studied the dissipative structure of 
shock waves propagating in dense gases. By applying a weak shock approximation 
they were able to derive a single evolution equation and to obtain explicit solutions 
for shocks propagating with constant speed. The structure problem for shocks of this 
latter type is found to be completely equivalent to the structure problem for weak 
shocks in steady transonic flow formulated here. It therefore suffices to briefly 
summarize the analytical form of the solutions to (5.3). To this end the right-hand 
side of this equation is written as 

flnv-jinv 1,s - :JQo(Pl-Pla) ( ~ l - ~ l b )  (A-P:) (A-PT), (5.10) 

(5.1 1) 

Inspection of figure 9 shows that shocks of type (iii) are characterized by real values 
of p?, while p: are complex conjugate for shocks of type (i) and (v). In the first case 
integration of (5.3) leads to 

I 
where 

p: = $ [ - C L ~ + ( C L ~ - ~ C X , ) ~ ] ,  

a1 = P ~ ~ + P ~ ~ + ~ A ^ O / @ O ,  012 = P:a+(Pla+Plb) ( ~ , , + 4 ~ ~ / @ ~ ) + 1 2 ~ ~ / ~ o .  
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If p: are complex conjugate, however, one obtains 

Here B,, B,, B,, B4 and B, are the quantities defined in Cramer & Crickenberger 
(1991) subject to the substitution ul, u2, uf+plb,  pla, p:. 

Using (5.12) and (5.13) the form of the solution for shocks of type (ii), (iv), (vi) and 
(vii) can easily be deduced by carrying out appropriate limits in p:, p;. 

To conclude this section we note that the pressure, temperature, velocity, entropy 
and Mach number distributions across weak steady transonic shocks can be 
determined immediately from the density profiles discussed so far by applying (3.18) 
and (3.13) if desired. 

6.  Conclusions 
The main objective of the present study was to deepen our understanding of 

transonic nozzle flows in the dense gas regime, which are expected to play an 
important role in new engineering applications of working fluids having large specific 
heats. The investigations are based on the standard Navier-Stokes equations 
supplemented with non-standard constitutive relationships. 

Adopting the assumption of quasi-one-dimensional flow, a perturbation analysis is 
carried out which leads to a novel form of the viscous transonic small-perturbation 
equation. Solutions to the non-dissipative version of this equation indicate that 
classical convergent-divergent nozzles are not suitable to generate shock-free flows 
if the medium is taken from one side of the r > 0 region to the other side as it 
accelerates from subsonic to supersonic speeds. In  order to avoid the occurrence of 
shocks nozzles of rather unconventional shape with two throats are found t o  be 
necessary. 

Tnvestigation of the jump relationships for weak shocks shows that the condition 
[s] 2 0 following from the second law of thermodynamics is not sufficient to  rule out 
inadmissible discontinuities, e.g. shocks for which a dissipative structure does not 
exist. Admissible shocks must satisfy the additional requirement that the Rayleigh 
line does riot cu t  the isentrope connecting the upstream and downstream state in 
internal points. Shocks which satisfy this admissibility criterion may occur in the 
form of compression/expansion shocks leading from supersonic to subsonic speeds or 
in the form of sonic/double sonic shocks having sonic upstream orland downstream 
conditions. Furthermore, analysis of the shock structure problem indicates that 
compression shocks which bridge the whole r < 0 region may exhibit density 
(pressure, temperature) profiles with three inflexion points rather than a single 
inflexion point if the shock strength X exceeds a critical value S,. As the shock 
strength decreases and approaches the critical value the overall density increase is 
achieved, essentially, in two (almost independent) steps. The density profile then 
comprises two (almost) classical density distributions having one inflexion point each 
which are separated by a pronounced plateau region. In  the limit S-S,+O+ the 
length of the plateau region increases without bound and the shock splits. A similar 
phenomenon was observed in a different context by Cramer & Crickenberger (1991) 
who studied the dissipative structure of finite-amplitude shock waves in dense gases. 
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+ 
FIGURE 14. Transonic flow past slender airfoil 

6.1. lVodi$ed viscous transonic small-perturbation equation for external flows 
Although the phenomena presented in this study are of interest in their own right, 
it  is felt that they can have a broader relevance. For example, the results derived here 
for transonic internal flows can be used immediately to infer the proper form of the 
governing equations for transonic external flows. To this end we consider the flow 
past a slender airfoil at a small angle of attack, figure 14. The subscript co is used to  
denote the values of the various field quantities evaluated at free-stream conditions. 

First, the flow inside a narrow stream tube formed by two neighbouring 
streamlines is certainly quasi-one-dimensional and can thus be modelled math- 
ematically by the equations for internal flows. Second, since the inclination of the 
streamlines with respect to  the free-stream direction is small, the changes of the 
cross-sectional area A with distance x is proportional to the variation of the lateral 
velocity component B in the y-direction : 

Third, since the flow is transonic the negative density perturbations and the 
perturbations of the streamwise velocity component u agree to a first approximation : 

a = (C-C,)/Gm - - (p-p",)/p", = -p. (6.3) 

Fourth, in studies dealing with external flows it is convenient to non-dimensionalize 
the various field quantities with their free-stream values rather than with the values 
corresponding to  critical flow conditions. As a consequence, the expression for 
the perturbation mass flux j = (@--pU, Gm)/bm G, contains the additional term 

(6.4) 
(1 -W,) u: 

j = (1 -pa) a-r,  u'3 +$im a3 -+arn u" + S, alx/ax. 
Substitution of (6.1) into the linearized form of the continuity equation for slender 
streamtubes assuming irrotational flow leads to 

(6.5) 

Introducing the perturbation velocity potential u = $x, B = q5, this result can be 
written in the equivalent form 

(6.6) (1 -we - 2 r m  $ , + A m  & - P m  5%) $XX+$,, = -Kc  9 X X X .  
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Working medium DL-11 c p  

Perfect gas: r,, = O(1) O(B) O ( d )  
BZT fluid: I-', = O(<) O(c) o q  
BZT fluid: To = O(9)  o(€q O(@) 

TABLE 1. Extent of the Mach number range and magnitude of pressure disturbances for 
transonic flow of perfect gases and BZT-fluids. 

Equation (6.6) represents a modified version of the viscous transonic small- 
perturbation equation for perfect gases A ,  = N ,  = 0 derived first by Liepmann, 
Ashkenas & Cole (1950). In the limit N ,  = 0, 8, = 0 it reduces to the equation 
obtained by Cramer (1991 b) which is valid near one of the high- or low-pressure zeros 
of the fundamental derivative. As in this case, the incorporation of dense gas effects 
into the theory of transonic external flows is found to lead to a significant 
inereaseldecrease of the lower/upper critical Mach number, e.g. to a significant 
reduction of the nonlinear transonic flow regime. 

By definition the lower critical Mach number Merit is the free-stream Mach number 
at  which the local Mach number first becomes sonic for a given airfoil shape. If M ,  
is sufficiently smaller than Merit linear theory applies. According to this theory 

a = O(s/( 1 -Pa);), (6-7) 

w h r e  E 4 1 characterizes the thickness ratio of the airfoil. Nonlinear effects, 
however, have to be taken into account if the changes of 

i - ~ 2  = ~ - w ~ - ~ ~ , u + A , u ~ - ~ J , u ~  (6.8) 

resulting from these velocity disturbances are comparable in magnitude with 1 -W,, 
in other words if 1 -Woo and r, E are the same order of magnitude. The way in which 
the free-stream value of the fundamental derivative influences the extent of the 
transonic flow regime is, therefore, quite obvious: decreasing values of r, must be 
balanced by decreasing values of 1 -W,, e.g. by increasing values of Merit. Using the 
Prandtl-Glauert relationship (6.7) and expression (6.8) for the local Mach number 
distribution the magnitude of this and related effects can easily be estimated 
analytically. As in the treatment of internal flows two different cases have to  be 
distinguished. In  the first case, studied recently by Cramer (1991a), and Cramer & 
Tax-kenton (1992), sonic conditions are reached near one of the high- or low-pressure 
zeros of r. Accordingly, the value of the fundamental derivative in the unperturbed 
flow is of the order of a characteristic velocity disturbance: rrn = O(E) .  Furthermore, 
A ,  = O(1) and the terms of (6.6), (6.8) proportional toN, can be neglected to leading 
order. In  the second case which is of interest here, the reference state is in the 
neighbourhood of the thermodynamic state having r = 0, W/appl, = 0. Consequently, 
we require r, = O(a2),  (loo = O(U) and N ,  = O(1).  

The results summarized in table 1 show the expected narrowing of the nonlinear 
transonic flow regime occurring in dense gases. According to the Prandtl-Glauert 
relationship (6.7) the associated increase of the lower critical Mach number leads t o  
an increase of the velocity and pressure disturbance level in the flow field. As a 
consequence, dense gases may generate substantially higher lift than perfect gases 
with no increase of the wave drag as long as the occurrence of shocks is avoided. Once 
shocks form, however, the resulting increase of the drag coefficient is more severe 
than in the classical case. 
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FIGURE 15. Schematic: of lightly loaded transonic cascade. 

6.2. Ligh,tly loaded tranuonic cascades 

The above considerations indicate that dense gases may prove beneficial as working 
fluids in turbomachines. I n  this connection, the design of t.ransonic cascades 
represents an important and difficult task. The complete version of the small- 
perturbation equation (6.6) applies to  the case that the spacing between the blades 
is much larger than the chord length, this ratio being of the order l /( l  --1erit)i. I n  
many cases of practical importance, however, the blade spacing is typically 
comparable with the chord length and the calculations can then be simplified 
considerably using the method of matched asymptotic expansions as pointed out 
first by Messiter & Adamson (1981) in a study of classical transonic flow. The most 
interesting implication is that a portion of the flow between any two adjacent airfoils 
is described in a first approximation as a one-dimensional internal flow. For a certain 
combination of parameters (thickness ratio, camber, angle of attack) presently under 
investigation this flow is governed by nonlinear equations of the form as derived in 
94, figure 15. The flow ahead and downstream of the channel is purely subsonic or 
supersonic, and the equations w e  found to be two-dimensional but linear. Since the 
mlutions holding in the channel region and t.he regions before and after the channel 
do not match, additional solutions in thin strips centred a t  the leading and trailing 
edges are also needed. I n  this way the overall flow problem is divided into a number 
of simpler problems which can be solved analytically. Preliminary considerations 
confirm the trends observed for single airfoils that, dense gas effects may be exploited 
to increase the lift force acting on the blades with no -increase of the drag if the 
formation of shocks is avoided. 

The author wants to thank Dr Ph. Gittler, Dip1.-lng. G. Lindner and Dip1.-Ing. J. 
Maklad for their assistance with the numerical computations. 
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